Heparanase shakes hands with lipoprotein lipase: a tale of two cells.

نویسنده

  • Subrata Chakrabarti
چکیده

Altered metabolism with excess provision of lipid substrates may be a major pathogenetic factor linking diabetes with cardiovascular disease—lipoprotein lipase (LPL) being one facilitator of such a process (1,2). Hyperlipidemia, by itself, plays a major role in lipid-provoked cardiovascular pathologies, largely mediated through LPL (3). Under physiological state, due to their presence on the endothelial cell surface, LPLs break down triglyceride lipoproteins in the circulation and provide tissues, like heart and skeletal muscle, with the required fatty acid substrates to derive ATP (3,4). A large volume of data, using genetically manipulated animal models and clinical studies, has found that LPL homeostasis is required for normal cardiac metabolism and function (5,6). In diabetes, increased metabolic demand of the heart is met by the breakdown of fatty acids by coronary LPL. LPL is produced by cardiomyocytes, which need endothelial-derived heparanase for LPL production. In this issue, Wang et al. (7) demonstrated that endothelial heparanase is taken up by the cardiomyocytes through caveolae and is converted to an active form in the lysosomal compartments of these cells. Endothelium-derived heparanase is instrumental for cleaving and releasing LPL from the heparan sulfate proteoglycans on the cardiomyocyte cell surface. Activated heparanase further translocates in the nucleus, increases histone acetylation, and augments matrix metalloproteinase-9 (MMP-9) production. Although this is an adaptive mechanism, increased MMP-9 may act as a mediator of lipotoxicity in chronic diabetes. To this extent, the authors show that MMP-9 cleaves the myocyte surface proteoglycan, syndecan1. This is a key finding that explains how a vicious cycle of events is stimulated following endothelial exposure to hyperglycemia and thus turning on an endothelial2cardiomyocyte cross talk through the mediation of heparanase. Earlier studies in this area were focused on the transcription of LPL gene and regulation of this protein in the cardiac tissue in metabolic stress (8). Only in the past decade has interest grown in the mechanism of LPL shuttling from cardiomyocytes to the endothelial barrier surface, where it performs triglyceride breakdown. The same group has previously shown that there was an increased occupancy of LPL on the capillary endothelial cells in streptozotocin-induced diabetic animals (2). However, the exact signaling mechanism, which pushes LPL from cardiomyocyte to the membrane surface of endothelial cells, was not evident. Earlier studies from this group further showed that activation of AMPK-p38 MAP kinase leading to heat-shock protein 25 (Hsp25) phosphorylation and F-actin polymerization plays a role in recruiting LPL from cardiomyocyte inner side to the membrane surface (9). They further demonstrated the process of vesicular fission from the Golgi bodies, where the mature enzyme is emitted (10). A common target for both the processes was found to be Hsp25 (9,10). Phosphorylation of Hsp25 detaches it from protein kinase C d (PKCd); the dissociated PKCd activates downstream molecule protein kinase D, with subsequent stimulation of vesicular fission of LPL and transport to the membrane surface (10). Although information on how a cardiomyocyte surface LPL could reach the endothelial surface remained a mystery, several consequences of heparanase release were identified. Wang et al. (11) previously showed that the active form of heparanase, derived from the endothelial cells, helps in cleaving and releasing LPL from the heparin sulfate proteoglycans on cardiomyocyte cell surface, whereas the inactive form serves in bringing the intracellular LPL pool to the membrane surface following RhoA activation. Active heparanase also was found to release vascular endothelial growth factor (VEGF) from the same proteoglycan holder (12). The released VEGF may stimulate an autocrine signaling by signaling through VEGF receptors present on the cardiomyocyte cell surface, turning on the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperglycemia-induced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase.

OBJECTIVE During diabetes mellitus, coronary lipoprotein lipase increases to promote the predominant use of fatty acids. We have reported that high glucose stimulates active heparanase secretion from endothelial cells to cleave cardiomyocyte heparan sulfate and release bound lipoprotein lipase for transfer to the vascular lumen. In the current study, we examined whether heparanase also has a fu...

متن کامل

Endothelial cell heparanase modulation of lipoprotein lipase activity. Evidence that heparan sulfate oligosaccharide is an extracellular chaperone.

A unique feature of lipoprotein lipase (LpL), the rate-limiting enzyme in the hydrolysis of circulating triglycerides, is its movement from its cell of synthesis, adipocyte or myocyte, to its site of action, the luminal endothelial surface. This involves processes that allow LpL to be released from the adipocyte cell surface and transferred against the flow of interstitial fluid to the luminal ...

متن کامل

Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid.

Following diabetes, the heart increases its lipoprotein lipase (LPL) at the coronary lumen by transferring LPL from the cardiomyocyte to the endothelial lumen. We examined how hyperglycemia controls secretion of heparanase, the enzyme that cleaves myocyte heparan sulphate proteoglycan to initiate this movement. Diazoxide (DZ) was used to decrease serum insulin and generate hyperglycemia. A modi...

متن کامل

Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization.

AIMS Heparanase, which specifically cleaves carbohydrate chains of heparan sulfate, has been implicated in the pathology of diabetes-associated complications. Using high glucose (HG) to replicate hyperglycaemia observed following diabetes, the present study was designed to determine the mechanism by which HG initiates endothelial heparanase secretion. METHOD AND RESULTS To examine the effect ...

متن کامل

Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes.

OBJECTIVE After diabetes mellitus, transfer of lipoprotein lipase (LPL) from cardiomyocytes to the coronary lumen increases, and this requires liberation of LPL from the myocyte surface heparan sulfate proteoglycans with subsequent replenishment of this reservoir. At the lumen, LPL breaks down triglyceride to meet the increased demand of the heart for fatty acid. Here, we examined the contribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 63 8  شماره 

صفحات  -

تاریخ انتشار 2014